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Abstract
Polaron effects for charge migration in DNA molecules have been previously considered within
the Peyrard–Bishop–Holstein model. When a uniform electric field is applied, the polaron
moves asymptotically at a constant velocity, provided dissipative effects are taken into account,
and then current flows through DNA. Disorder originating from interactions with a random
environment of solute molecules and ions surrounding the DNA molecule could prevent charge
migration due to the localization of the carrier wavefunction. We studied numerically the
Peyrard–Bishop–Holstein model when the disordered DNA molecule is subjected to a uniform
electric field. We found the threshold value of the electric field to observe polaron motion when
disorder is present. We also calculated the fluctuations of the electric current and found that
they provide valuable information about the polaron dynamics.

1. Introduction

In DNA molecules, as in other polymers, an extra electron
or hole distorts the lattice to form a charged polaron
that extends over several sites of the lattice. In recent
years, polarons and charge transport in DNA have attracted
considerable attention (see [1] for a review). This interest
is in part motivated by experiments on electric transport
through dry and wet DNA molecules that revealed a variety of
results, ranging from ohmic-like [2–5], semiconducting [6–10]
and insulating [11, 12] behaviors. The dynamics of the
polaron can be described by an effective one-dimensional
approach, referred to as the Peyrard–Bishop–Holstein (PBH)
model [13–15], in which the electronic wavefunction obeys the
time-dependent Schrödinger equation and the lattice distortion
is treated classically by a Newtonian equation of motion
beyond the linear approximation.

The PBH polaron subjected to a direct current (dc) electric
field performs Bloch oscillations [16] when the Bloch period
is shorter than the relaxation time [17]. At a much larger
time, the carriers lose their phase coherence through scattering

processes and the polaron moves classically with a uniform
velocity [18]. The PBH model assumes that the DNA molecule
is uniform with the same value of the site energy at every base.
Nevertheless, the environment of solute molecules and ions
surrounding the DNA molecule can affect not only the sugar-
phosphate backbone but also the base molecules. Disorder
originating from interactions with the random environment
could prevent charge migration at low temperature due to
the occurrence of Anderson localization [21]. Therefore, the
polaron could be trapped unless the dc electric field exceeds
a threshold value. Since the threshold field will depend on
the magnitude of disorder, its magnitude will carry relevant
information about the influence of the random environment on
the charge transfer in DNA.

In this work we report on a more general description of
the polaron dynamics by introducing disorder into the well-
established PBH model [13–15]. The paper is organized as
follows. In section 2 we describe the effective one-dimensional
model corresponding to a homopolymer DNA. We use a non-
adiabatic dynamical evolution method, in which carriers obey
the Schrödinger equation and the deformable lattice is treated
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classically. We also introduce the model of disorder due to the
interaction with the random environment of the DNA molecule.
Physical magnitudes that characterize the dynamics of the
polaron are introduced in section 3. Afterwards, in section 4
we turn ourselves to the main topic of the paper, the dynamics
of the polaron in weakly disordered DNA. In contrast to the
standard PBH model, we find that polarons can be trapped
by weak disorder at low values of the applied electric field
and current cannot flow through the DNA molecule. The
polaron becomes mobile when the electric field is larger than a
threshold value that depends on the magnitude of disorder. Our
final comments and discussions are contained in section 5.

2. Polarons in the PBH model

We consider a one-dimensional tight-binding model corre-
sponding to a homopolymer DNA. The Schrödinger equation
for the carrier subjected to a dc electric field F is

ih̄
dψn

dt
= εnψn − T (eiωBtψn+1 + e−iωBtψn−1)+ χynψn, (1)

where ψn is the probability amplitude for the charge carrier
located at the nth base. The parameter ωB = eFa/h̄ is
the Bloch frequency (a = 3.4 Å in DNA). Notice that
h̄ωB = eFa is the potential drop between nearest-neighbor
nucleotides along the stacking direction. The molecular energy
levels εn are assumed to be uncorrelated random variables due
to the interaction with the environment. We consider static
disorder and neglect time fluctuations of the site energies.
Thus, our model does not take into account the dynamics of
water molecules in DNA (wet DNA). The hopping integral is
restricted to nearest-neighbor nucleotides and its magnitude
is given by T . The coupling of the carrier to the uniform
electric field is taken into account by the phase factor in the
hopping integral. Therefore, periodic boundary conditions can
be easily implemented [18]. The last term in equation (1)
describes the carrier–lattice coupling through the constant χ
and the stretching displacement yn of the nth nucleotide from
its equilibrium position.

The DNA lattice is described classically by Newton’s
equations of motion for the displacement yn

m
d2 yn

dt2
= −V ′

M(yn)− W ′(yn, yn−1)− W ′(yn, yn+1)

− χ |ψn |2 − mγ
dyn

dt
, (2)

where m is the nucleotide mass and the prime indicates
differentiation with respect to yn. The last term in equation (2)
takes into account the energy dissipation of the lattice. In the
PBH model, the Morse potential

VM(yn) = V0(e
−αyn − 1)2 (3)

arises from the anharmonic interaction with the sugar-
phosphate backbone as well as between complementary base
pairs. In addition, the anharmonic coupling between nearest-
neighbor nucleotides along the staking direction is described
by the potential [15]

W (yn, yn−1) = k

4
(2 + e−β(yn+yn−1))(yn − yn−1)

2. (4)

Figure 1. Modulus of the carrier wavefunction (upper panel) and
lattice displacement (lower panel) in the homogeneous homopolymer
DNA molecule at t = 0 for different values of χ .

The dynamics of the PBH model at finite temperature have
been addressed by Kawano and Maruyama by subjecting
the lattice degrees of freedom to Langevin molecular
dynamics [19]. They found a good agreement between
numerical results and experiments on the mean velocity of
the polaron. Therefore, the classical description of the
lattice dynamics provides an accurate framework to deal with
polarons in DNA.

According to [15], the model parameters are given by m =
300 amu, V0 = 0.04 eV, α = 4.45 Å

−1
, k = 0.04 eV Å

−2
,

β = 0.35 Å
−1

and T = 0.1 eV. The chosen value of the
parameter V0 is compatible with poly(A)-poly(T) synthetic
DNA [20]. It should be stressed that the effects of the random
environment on the lattice dynamics is neglected hereafter.
This assumption is reasonable due to the large mass of the
nucleotides as compared to the mass of counterions.

We numerically solved the set of nonlinear equations (1)
and (2) using a Runge–Kutta method of 4th order, considering
a homopolymer DNA molecule under periodic boundary
conditions. The initial polaron state in an unbiased lattice (F =
0) is obtained according to the procedure given in [14],
including the dissipative term in equation (2) with γ =
50 THz. Once the stationary solution is found, it is then taken
as the initial condition at t = 0 to solve equations (1) and (2)
with F �= 0.

The initial polaron obtained in our simulations in the
unbiased and uniform DNA molecule is shown in figure 1 for
different values of electron–lattice coupling constant χ and the
lattice size N = 500. The polaron is narrower as χ increases,
as expected.

3. Polaron motion and electric current density

As mentioned above, in the steady state the polaron moves with
constant velocity in the uniform lattice (εn = 0). The steady-
state velocity increases sublinearly with the applied electric
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Figure 2. Modulus of the carrier wavefunction |ψn(t)| as a function of position and time in a lattice of N = 500 sites for χ = 0.6 eV Å
−1

,
W = 3 meV and (a) F = 5 kV cm−1 and (b) F = 12 kV cm−1.

(This figure is in colour only in the electronic version)

Figure 3. (a) Threshold electric field, Fth, above which the polaron
becomes mobile, as a function of the magnitude of disorder for
χ = 0.6 eV Å

−1
. The insets show the centroid as a function of time

for the values of electric field and magnitude of disorder marked by
solid squares. (b) Comparison of the threshold electric field, Fth, for

χ = 0.4 and 0.6 eV Å
−1

.

field [18]. It is important to stress that in this model the polaron
moves at constant velocity even for tiny values of the dc electric
field, yielding a nonvanishing average current density J (t)
through the DNA

J (t) = h̄e

me Na2

N∑

n=1

Im[ψ∗
n (e

iωBtψn+1 − e−iωBtψn−1)], (5)

where me is the electron mass. We will show below that the
polaron can be trapped when disorder is taken into account,
and the electric field must exceed a threshold value to observe a
mobile polaron. Disorder arising from the interactions with the
environment is modeled by assuming that the molecular energy

levels form a random sequence. Thus, we take εn = ε̄ + 	εn

where the probability distribution for the uncorrelated random
variables 	εn is set as P(	εn) = (1/W ) θ(W/2 − |	εn|),
θ being the Heaviside step function. W will be referred to as
magnitude of disorder.

To characterize the trapping or motion of the polaron,
we will study the centroid c(t) = x(t) − x(0) of the carrier
wavefunction, with x(t) = ∑

n n|ψn(t)|2. When the polaron
moves at constant velocity and electric current flows through
the DNA molecule, namely c(t) ∼ t , we will consider also the
autocorrelation function

R(t) = lim
T →∞

1

T

∫ T /2

−T /2
J (t ′)[J (t ′ + t)− J (t ′)] dt ′ (6)

as well as its Fourier transform, R(ω), referred to as the power
spectral density.

4. Results

The time-domain evolution of the polaron in the weakly
disordered DNA molecule depends on the magnitude of the
dc electric field. For a given magnitude of disorder W , the
polaron cannot move with constant velocity at low fields.
Figure 2(a) shows the modulus of the wavefunction in a lattice
of N = 500 sites as a function of position and time, when
W = 3 meV for χ = 0.6 eV Å

−1
and F = 5 kV cm−1 (we

set γ = 5 THz hereafter). Initially the polaron is centered at
site n = N/2 = 250 and drifts during ∼5 ps until it is trapped
around site 257. Notice that the centroid of the polaron remains
constant and no signatures of oscillations are found, indicating
that the trapping mechanism is not dynamical localization [17]
but localization by disorder. To observe the detrapping of the
polaron, the electric field should be stronger than a threshold
field. Figure 2(b) shows the modulus of the wavefunction when
F = 12 kV cm−1 in the same lattice as in figure 2(a). Clearly
the centroid increases linearly in time, indicating a constant
velocity motion of the polaron.

Figure 3(a) shows the threshold electric field, Fth, above
which the polaron becomes mobile, when χ = 0.6 eV Å

−1
.
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Figure 4. Snapshots of the modulus of the carrier wavefunction at
times indicated on each curve when (a) F = 3 kV cm−1 and
(b) F = 5 kV cm−1. The remaining parameters are χ = 0.4 eV Å

−1

and W = 1 meV.

As mentioned above, the threshold electric field depends on
the magnitude of disorder, W . The dependence is slightly
sublinear in the chosen range of parameters. Figure 3(b)
compares the threshold field for χ = 0.4 and 0.6 eV Å

−1
. We

observe a clear decrease of Fth as the electron–lattice coupling
constant decreases and the lattice becomes stiffer.

It should be mentioned that the polaron is unstable at
high electric field. In general we have found that the electric
field above which the polaron becomes unstable increases upon
increasing the electron–lattice coupling constant, in agreement
with previous results [18]. Figure 4(a) shows the modulus of
the carrier wavefunction of a stable polaron, in which its shape
remains unchanged when W = 1 meV, χ = 0.4 eV Å

−1
and

F = 3 kV cm−1. The instability is clearly seen in figure 4(b)
when the electric field is F = 5 kV cm−1. In this case the
carrier wavefunction loses its initial shape on increasing time.
In general we have found that magnitude of disorder above
which the polaron becomes unstable increases upon increasing
the electron–lattice coupling constant. In addition, the polaron
becomes unstable at a large magnitude of disorder, larger than
the values used in the present work.

The frequencies involved in the polaron dynamics under
an external bias can be determined accurately by calculating
the power spectral density. Figure 5 displays this magnitude for
χ = 0.6 eV Å

−1
and two different values of the electric field.

The integration time in (6) was T = 300 ps. Remarkably,
in all cases we found that the power spectral density shows
a clear maximum at the Bloch frequency ωB = eFa/h̄.
Disorder broadens the observed peak and satellite peaks appear
at higher frequencies. The origin of the peak at the Bloch
frequency is related to the breathing motion of the carrier.
The width of the wavefunction oscillates harmonically with the

Figure 5. Power spectral density for χ = 0.6 eV Å
−1

and
(a) F = 5 kV cm−1 and (b) F = 12 kV cm−1. The magnitude of
disorder is indicated on each curve. The upper curve in panel (b) is
shifted upwards for clarity. The arrows indicate the value of the
Bloch frequency ωB = eFa/h̄ at each magnitude of the electric field.

Bloch frequency and this oscillation is reflected in the averaged
current density (5). It is worth stressing that in this regime of
parameters including dissipation, the polaron does not perform
Bloch oscillations. In other words, the centroid c(t) does not
oscillate but displays a uniform motion, increasing linearly
with time (see left inset in figure 3(a)).

5. Conclusions

It is believed that charge migrates along the coupled π -
orbitals of neighboring bases in DNA. Solute molecules and
ions surrounding the DNA molecule may have a deep impact
on the charge transport and, in particular, on the dynamics
of large polarons. The environment affects not only the
negatively-charged sugar-phosphate backbone but also the
base molecules. As a consequence, the molecular levels
can fluctuate around their ideal values due to the interaction
with the environment. Therefore, realistic models of polaron
transport should take these fluctuations into account. We have
generalized the Peyrard–Bishop–Holstein model to include
random site energies, neglecting the environment effects on the
lattice dynamics. An applied dc electric field along the stacking
direction drives the polaron migration.

As a major result we found that the polaron remains
trapped in weakly disordered DNA molecules and low electric
field. In other words, the electric field must exceed a threshold
value to move the polaron. The threshold electric field
becomes larger with an increasing magnitude of disorder. The
occurrence of a threshold field effectively opens a gap in the
current–voltage characteristic curve of the DNA molecule. We
also found that the threshold electric field decreases as the
lattice becomes stiffer. It should be mentioned that polaron
trapping in the presence of an electric field and different site
energies was also found in the time-dependent Su–Schrieffer–
Heeger model [22].
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From our analysis it became apparent that the polaron
moves with a constant velocity or it is trapped, for the chosen
parameters. In the latter case, when the magnitude of disorder
is large enough, the DNA conductance decreases and the
molecule becomes insulating at zero temperature. The study of
polaron dynamics in disordered DNA at finite temperature is
under progress and it will be reported elsewhere. Surprisingly,
the power spectral density presents a clear peak at the Bloch
frequency ωB = eFa/h̄ when a current flows through the
DNA. We related this behavior to the breathing motion of the
polaron.
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